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(1) METHODOLOGY

It is challenging to construct “interpolant” which can be deduced through mathematical analysis by use
of given input function values at random locations. The well-known Lagrangian interpolation formula (ref. 1) in
one-dimension is still in use today. Though the Lagrangian formula can be shown by using polynomials through
mathematical derivation. However, it is not straightforward to extend the formula to 2-dimension and above.
Popular interpolation methods (Shepard’s distance-weighted, Hardy’s multiquadrics, Kriging, etc.) have been
developed and practiced successfully in the past few decades in different industries, as well as in scientific and
engineering research (refs 2, 3). On the other hand, in statistics community the so-called nonparametric kernel
regression (ref. 4) has been studied in the past 50 years, and many analytical results have been discovered,
including interpolants (called estimators) and their associated errors and convergence rates. In fact, the original
Shepard’s interpolant looks somewhat similar to the well-known “Nadaraya-Watson estimator” practiced in
kernel regression analysis. Starting from a different approach through our observation, we are able to derive
analytically, and establish quickly the interpolant formula for 1-dimension, 2-dimension and any  higher
dimension. The interpolant found in Dirac-Monte Carlo method has been identified and it is closely related to
Nadaraya-Watson estimator. However, one distinct feature of DMC interpolant, different from other
interpolants/estimators, is that DMC interpolant is dependent upon individual “coordinate separation”, not on
the “distance”. This difference makes DMC interpolant capable of handling non-convex domain (For example,
in between two concentric spherical shells in 3-D or two concentric circles in 2-D, or L-shape corridor.). With
the help of Dirac delta function, it is straightforward to generalize DMC interpolants in terms of non-Cartesian
coordinates, such as polar coordinates, spherical coordinates, cylindrical coordinates, etc. (ref. 5). Furthermore,
the error (uncertainty) analysis of DMC interpolant is derived directly through the use of Central Limit Theorem
and different from the findings of kernel regression method. Due to the fact that DMC is a new interpolation
formulation, we present the mathematical analysis below to describe DMC method. (Please also view web
pages, including references, FAQs, and comparison with other intepolants provided at RDIC)

First, the two ingredients, Dirac delta function and Monte-Carlo method, used in the formulation are presented:

(1)  Dirac delta function  (Refs. 6, 7)

Dirac delta function is a special impulse, weighting function which has the following properties:
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Note that the delta function was introduced by Paul Dirac in theoretical physics in the early 20th century. The
function has been given a rigorous, mathematical treatment by L. Schwartz with theory of Distribution. A number
of analytical expressions of delta function are commonly used in the literature. They exist in the forms of rational
function, transcendental function and infinite series expansion. The rational function below will be used to
approximately represent the original Dirac delta function in our work. [Please note the subscript ∆ is added to
δ (x’-x).]
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It should be said that the rational function )'( xx −∆δ in (Eq. 3) is known as “Lorentzian” or “Breit-Wigner
distribution” in physics and widely used for “resonance” phenomena in classical mechanics and quantum
mechanics. It is also known as “Cauchy density” in statistics. A graphical display of delta function (Eq. 3) is
shown in Figure A, where ∆ =0.1 and ∆ =1.0 with x=0. The abscissa is x' axis and the ordinate Y is

)'( xx −∆δ .

Figure A.  Approximated Dirac Delta Function

Note that the smaller ∆  is, the higher the peak will be and the more narrow the peak will become. The
approximated Dirac delta function is peaked symmetrically and drops quickly towards zero value. The function
has half peak value when x’-x = ± ∆ . The area under the curve is always equal to 1 according to Eq. 2. Note that
in theory Dirac delta function demands that the width approaches zero. However, in numerical computation, it
can be set to a small (relative to the domain interval) and finite number. The delta width is an important
parameter and will be discussed further later in the section.

(2)  Monte-Carlo Integration  (ref. 8 and ref. 9)
In the late 1940’s, a novel technique was developed by E. Fermi, J. von Neumann, and S. Ulam in the area of
evaluating integrals numerically. The method has been proven a powerful tool to handle computations of multi-
variable problems in diverse subjects, physics, chemistry, biology, economics etc. In particular, Monte-Carlo
method has been a great help to numerically evaluate multiple integrals in applications. There are two
fundamental theorems behind Monte-Carlo method: (a) Strong law of large numbers; (b) Central limit theorem.
They are briefly stated below to facilitate the presentation of Dirac-Monte Carlo method.

(a)  Strong law of large numbers



If a sequence of N random variables x1 to xN are picked from a population with the probability density
function g(x) and a new random variable A defined by the equation,
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where Z(x) is a given integrable function, and if the integral
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exists, then A, with probability 1, approaches Z  as a limit as N approaches infinity.

(b)  Central limit theorem
For large N, the probability density distribution of A, G(A), is Gaussian, centered at Z  with a standard

deviation (
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) times that of the distribution of Z,
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where σ  is the standard deviation of Z.(That is, σ 2 2= −( )Z Z ). The above result is independent of

the nature of Z(x) or g(x). In essence, the probability that the deviation of

A from Z  will exceed 
N

σ± is 31.7%, 
N

σ2±  4.5%, 
N

σ3±  0.3%.

Now, the Dirac-Monte Carlo (DMC) formulation of interpolation is described below. We observe that the following
equation exists,
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and with the substitution of δ ( ' )x x−  by )'( xx −∆δ of (Eq. 3) , (Eq. 7) becomes
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where x is the arbitrary value of x’ variable and a1<x<b1,  f (x’) is continuous and ε  is a finite number and is a function
of  x and the delta width ∆ . As ∆  approaches zero, so does ε  regardless of the value of  x . Next, using the density
function defined as,

g(x’) =  1/(b1-a1),   for a1<x’<b1,    and    g(x’) = 0,  otherwise;                     (Eq. 8)

(Eq. 7A) is recast by use of (Eq. 4) and Z(x) = (b1-a1) )'()]()'([ xxxfxf −− ∆δ , M’=N , and it gives,
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and changing the “approximate” sign to “equal” sign”, we obtain
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where E is the statistical error occurred by using Monte-Carlo integration. By suppressing the first two terms on
the right hand side of the above equation (Eq.9A), we define fA(x)as,
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where xi are randomly chosen in the interval (a1, b1). It can be seen that by providing xi, and f (xi), (Eq. 10) can be used to
interpolate the function f (x) at location x where a1<x<b1. Note that f

A
(x)is the searched interpolant. The accuracy and

the convergence of  f
A
(x) are governed by two factors, ε  and E .They will be discussed later in detail in the error

analysis below. In essence, ε  factor controls the “systematic bias” error and E  factor controls the statistical random
error. The ε  factor depends on the value of ∆  and x , and is assumed small (See an example in Section 3) across the
entire supported domain, except near the boundary. It should be said that (Eq. 10) has the same form as the famous
nonparametric “Nadaraya-Watson” kernel regression estimator, fNW (x) which is defined as, (ref.10 and ref. 11)
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H factor is also called “width” or “band width” in nonparametric kernel regression and controls the kernel smoothing
property. The connection between our derivation of the interpolant (Eq. 10) and nonparametric kernel regression can be
understood because the original Dirac delta function is defined as a special “local, weighting function”.

For 2-dimension Cartesian space, (Eq. 7), (Eq. 7A) and (Eq. 9) are generalized respectively to,
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where ε 2 is a function of X1, X2, ∆ 1 and ∆ 2.
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With the use of (Eq. 3), we rewrite (Eq. 12) as,
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     (Eq. 13)

The above equation (Eq. 13) is the 2-dimensional interpolant where x1 is the x-coordinate and x2 is the y-coordinate.
Thus, (x1i, x2i)is the ith input random location and f(x1i, x2i) is the associated function value. (x1, x2) is the requested
location where interpolation is to be calculated. M  ‘  is the total number of input locations. With ∆ 1 and ∆ 2 values given
(preset), (Eq. 13) can be used to calculate the interpolated function value, fA(x1,x2). It can be seen that the interpolant,
(Eq. 13), depends on the “product”of two coordinate-separation terms,

[(x1i-x1)2+ ∆ 1 2] [(x2i-x2)2+ ∆ 2 2]

and not on the distance which is defined as the square root of (x1i-x1)2 + (x2i-x2)2 .

At this point, it should be said that ∆ 1 and ∆ 2 values can be estimated within the framework of DMC. The following
formula can be found (See detailed presentation below in Section 2),
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If )()( 2211 abab −=− , then ∆ 1 = ∆ 2 (See Section 2) and (Eq. 14) becomes
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One can easily calculate the value of ∆ 1  when the interval length )( 11 ab − is provided .

We now begin the analysis of accuracy of (Eq. 13) and present the error analysis in terms of the Central
Limit Theorem. Recalling (Eq. 9A),
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where  E is the statistical error, and both ε  and E are dependent on x and ∆ . The interpolant  fA is defined by (Eq.
10). So, the difference between f(x) and fA(x) is the deviation incurred in the interpolation process,
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Note that the denominator is always “positive” and “not equal to zero” and in fact it is in the form  when the integral
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is calculated by use of Monte-Carlo integration and is also governed by the Central Limit Theorem .(See more of this
connection in Section 2).

For 2-dimension case, the deviation is generalized to,
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where )( 111
xx i −∆δ and )( 222

xx i −∆δ are defined by (Eq. 3). Note that on the right hand side of (Eq. 16), the

denominator can be computed for the requested location (x1, x2) and E in the numerator is governed by the Central

Limit Theorem. As said earlier about (Eq. 6), the deviation error E will exceed 
N

σ± with probability 31.7%,

N

σ2±  with probability 4.5%, and  
N

σ3±  with probability 0.3%. Again, N   is equal to the input location

number M ‘. All needs to be done is to find the value of ε  and σ . We shall do so as follows.

Let us recall Eq. 7A,
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and the density function,
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As can be seen, both ε  and 2σ  can not be calculated because they involve the unknown function f(x’). However, the
sample estimates of ε  and 2σ can be computed by use of,
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The 2-dimensional case of (Eq. 18) and (Eq. 18A) have the following forms,
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The above two equations and (Eq. 16) can be used to calculate the uncertainty for the interpolation result. The function
value f(x1, x2) is set to the true value if known. In the event when no true value is given, then

f(x1, x2) can be set to the interpolated value,  fA(x1, x2). When doing so, the sample 2ε value (or ε value for one-

dimension case) will always be zero, because
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and the deviation is given only in terms of the statistical factor E which can be computed.

We note in passing that, by reducing the delta width ∆ 1 and ∆ 2 used in (Eq. 13) towards zero, the interpolation semi-
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norm approaching zero will remain true in our formulation for any higher dimensional space.

Finally, we shall address the convergence rate for 2-dimension and the same procedure can be applied to any

other dimension.. As ∆ 1 and ∆ 2  approach zero, and M’ approaches infinity,  2ε approaches zero according to the
following analysis.  We recall (Eq. 11A),
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As ∆ 1 and ∆ 2  approach zero, the above equation gives,

→2ε (constant 1) ∆ 1 + (constant 2) ∆ 2                       (Eq. 20)

From the analysis in Section 2, we know that ∆ 1 and ∆ 2  are proportional to 
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Now let us turn the attention to the E factor in (Eq. 16). Due to the complexity of 2-D E factor, we perform the analysis in
1-D below and the whole presentation can be extended to 2-D in a straightforward manner. Recalling (Eq. 7A) and (Eq.
17), they give
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where for bounded domain support [a1, b1],  g(x’) equals to 1/(b1-a1) for a1<x’<b1  and
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   ≈ (constant) ∆                                     (Eq. 21)

Thus, (Eq. 17) becomes for 1-D, (Note that ε  is proportional to ∆  in 1-D.)
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Hence, in 1-D we can see that the E factor, which is proportional to 
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Now, let us generalize the above 2σ analysis for 2-D.
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Note that the integral
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and the integral
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We can now approximate (Eq. 23) as,
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Recalling in 2-D, ∆ 1  and ∆ 2  are proportional to
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M
.  Therefore, the E factor converges as 
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 same as in 1-D.

There is one more factor which needs to be studied before we can find out the convergence rate of (Eq. 15A) for 1-D. It is
the denominator of (Eq. 15A). As explained before, the denominator of (Eq. 15A) is the Monte-Carlo integration of the
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Similarly, in 2-D, the denominator of  (Eq. 16) is the Monte-Carlo integration of the integral,
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where G2 factor is proportional to '
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In Section 2, we also found, a general form of  (Eq. D-9),
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At last, we can conclude that the convergence rate of (Eq. 15A) for 1-D. It converges according to,
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and (eq. 16) for 2-D,
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In more than 2-dimension, each individual delta width is proportional to n M '
1

 where n is the dimensionality.

Therefore, the convergence rate is proportional to n M '
1

 which is much slower. Indeed the Curse of Dimensionality

(COD) inevitably shows up in the analysis. In summary, in one dimension, the convergence is controlled by ε and E. In

two dimension, the convergence is dominated by 2ε  . For n-dimension (n > 2), the convergence is again dominated and

controlled by the nε  bias factor.

CONVERGENCE   SUMMARY

Dimension
nε Bias term E   Random error

term
1-D
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M '
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M
2-D
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n-D
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Appendix A. More about Monte-Carlo Method

It should be said that Strong law of large numbers and Central Limit Theorem  do not give prescriptions for
deciding how large N should be. However, in real life calculations when Z(x) is well-behaved, N generally can
be a finite number in the neighborhood of 10 to 20 for one dimension problems. Of course, with higher N the
interpolant will yield better accuracy results. In addition, these two theorems do not depend on the
dimensionality of the integral. It can be anticipated that the number of points required to evaluate a multi-
dimensional integral could still be manageable.

In using Monte-Carlo method, one needs to generate a set of random numbers xi distributed uniformly over the
interval a<x<b (one dimension problem). The following procedure is generally used to find the set. The density
function,

   1/(b-a),  for a<x<b



g(x) =
       0,    otherwise

and the two boundary conditions, namely, when Ri=0, xi=a and Ri=1, xi=b. One can easily obtain the following
relation,

xi = a + Ri*(b-a)       (Eq. A)

where Ri is the random number between 0 and 1, and it is generally produced  by using the random number
generator available on the computer. This whole process can easily be extended to multi-dimensional space
when all variables are constrained in the specified intervals. The user generates sets of random numbers (R1,
R2,....,Rn) and each set will be used to calculate the coordinate locations of the sample point in design space.
There are n equations similar to Eq. A and one for each coordinates.

Appendix B. More about Delta width

Our earlier experience indicated that the delta width ∆  can be set as a few percent of the variable interval
length. See more detailed analysis about estimating delta width value in Section 2. This is an important
parameter and its proper setting is closely related to the number of random sample points N. Analytically, one
can estimate the value of ∆  for the interpolation as shown in the next section.

Note that there is a scaling property of the delta width ∆  with respect to the interval length. Let us illustrate this
property by using the following equation, (For simplicity, choose x=0.)
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In real computation, l  and ∆  are both finite numbers. Thus, for example, if the interval length 2 l  equals 20
(That is l =10.), one can choose ∆  close to 1 and it gives,

   
π
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[ tan-1(

∆
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)] = 
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1
[ tan-1(10)- tan-1( 10− )]≈0.936

which is close to 1. Henceforth, if the interval length is 200, then ∆  can be chosen close to 10. Conversely, if
the interval length is 2, then ∆  can be chosen close to 0.1. The important thing to keep in mind is that ∆  is

“small” with respect to the interval length. Furthermore, in two-dimension case, if x-interval length xl  and y-

interval length yl  do not have the same length. Then one needs to make sure that x∆  and y∆ are chosen such

that they satisfy,
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The same argument should be applied to multi-dimension situation.



(2) Estimate of Delta width

Use the definition of Dirac delta function for the interval (a,b),
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and recast the integral using Monte-Carlo method,
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The two-dimensional extension of (Eq. D-1) is,
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To be more exact, let us change the “approximate” sign to equal sign in (Eq. D-1) as,
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where Dσ , originated from the Monte-Carlo integration error, is a function of ( ∆ ,x,a,b) and it is expressed in
the analytical form,
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Note that (Eq. D-3) can be recast into
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The above inequality equation holds true with probability 99.7% in accordance with Central Limit Theorem. As
can be seen, ∆  can take a range of values to satisfy (Eq. D-5). Given M’,b, a, xi, and x, one can solve ∆
analytically from (Eq. D-5) in principle. However, this is not an easy task and the closed form solution is
unlikely to be found. However, one can try to solve ∆  in (Eq. D-5) by use of numerical methods. But, it will
also be tedious because for each x-value, one needs to calculate the corresponding ∆  values. Instead,  we
propose to use the following approach to find a “first-cut value” of ∆ . First, let us define the symbol “S” in the
following equation, (Eq. D-6),
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Empirically, we have found that S is generally greater than one when x is near or at xi and less than one when
otherwise, if ∆  value is about 5 to 10% of the interval length. Thus, we use the following equation to find an
approximate, ”first-cut value” of ∆ , namely,
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Note that both M’ and ∆  are finite. In principle one can solve the ∆  value in (Eq. D-7) and ∆  value found
depends on the value of x. However, it is easier to use the following argument to find the answer. We note that
when ∆  is a small percentage of the interval length, (Eq. 10) in Section 1 becomes, when x=xi, by keeping the
dominant term,
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This demonstrates that the interpolated value fA(xi)reproduces the input function value )( ixf  when ∆  is small
and this property is independent of dimensionality. In the same token, let x=xi, one obtains, keeping the
dominant term of S  of (Eq. D-7) and ignoring contribution from any other sample points,
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By doing so, we find the first-cut value of ∆ . For example, Giving (b-a)=20 and M’=10, the above equation
gives  ∆ = 0.63,  and ∆ = 0.31 if M’=20. The ∆ found can be used for the entire domain supported.

For two dimension case, the above formulas (Eqs. D-6, 7) are generalized to,
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and,
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For a square region a=a1=a2, and  b=b1=b2 (choosing ∆ 1 = ∆ 2 = ∆ ), one obtains
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Again, choosing (b-a)=20 and M’=40, one gets ∆ = 1.006, and ∆ = 1.83  if M’=12. Again, these are “first-cut”
values for ∆ 1 and ∆ 2. For n-dimension, use the following formula to calculate ∆ (assuming all ∆ s have the
same value),
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If the supported domain is not a square (in 2-D) but a rectangle, then one needs to find the relationship between
∆ x (or defined as ∆ 1) and ∆ y (or defined as ∆ 2) first. By use of the equation found earlier,
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The whole analysis can be easily extended to n-dimension.

Once the first-cut value of ∆  is found, one can fine tune the value according to the application at hand. For
example, if one wants the interpolant to reproduce more correctly at input locations for the global peak and
global valley value of the input function, one generally needs to reduce the first-cut value and check if the newly
interpolated value is closer to the global peak or global valley value. By doing so, we can check the sensitivity
and self-consistency of the interpolant. This fine tuning is an iterative process and typically, one can stop the
iteration when the reproduced value is about 95% of the peak and valley value. On the other hand, if one wants
to generate more smoothly interpolated values (say for Response Surface applications), then one can increase
the first-cut value to achieve the smoothness. The general rule of thumb is, “a larger width value will erode the
peak and fill in the valley” and “a smaller  width value will raise the peak and deepen the valley”. In addition, a
large width may over-smooth the interpolated function and a small width may produce “spikes” artifacts which
are unwanted. For SIC 2004 exercise (http://www.fanginc.com/sic1.pdf), it involves the interpolation of “natural
ambient radioactivity” in the atmosphere. Due to the stochastic nature (many peaks and valleys) of the
radioactivity distribution, we reduced the first-cut value so that the interpolant can generate the interpolated
values more sensibly in compliance with (global maximum) input peak and (global minimum) valley values.
Furthermore, even though the supported domain has a rectangular shape for the exercise, we found ∆ x = ∆ y

works well to achieve better the fine-tuning. (See Example 2 below at the end of this Section) Finally, quite
often, the first-cut value can be used for interpolation right away without any change. This statement is more
correct in high-dimension (3D and above) than in low-dimension (1D, 2D) because in higher dimensional space,
the input locations are more sparsely distributed and hard to find one another in close-by neighborhood.

In this section, we have established, for any dimension, a relationship between the first-cut delta width and the
sample number M’ with the use of (Eq. D-6) . It can be seen clearly that as M’ goes to infinity, the first-cut delta
width will approach zero (and vice versa), even though at a slower rate, and the product (M’ ∆ ) will approach
infinity, except in one-dimension. This limit result of (M’ ∆ ) is compatible to the finding (That is, the optimized
kernel width calculated through Mean-Squared-Error.) obtained by the standard nonparametric kernel regression
analysis, except in one-dimension.

Before closing, let us present two examples to illustrate the steps to find delta width values. Both examples are
for 2-D.

Example 1: There are 12 input locations together with the associated function values. They are listed in
the following table. Both x1 and x2 are defined between -10 and +10.



Location
Number

Input
Location
(X1, X2)

Input
Function
 f(x1, x2)

1 (1.6, 9.0) 226.06
2 (5.6, -4.2) 79.54
3 (-1.0, -10.) 8.93
4 (-4.6, -4.0) 9.87
5 (3.6, -2.4) 60.36
6 (-7.4, 6.6) 119.93
7 (1.6, -8.2) 12.23
8 (-4.6, 2.4) 52.36
9 (-8.4, 9.8) 183.89

10 (9.4, 3.8) 302.61
11 (8.6, -5.8) 134.51
12 (-7.4, 7.2) 129.86

Solution: From (Eq. D-9), we obtain ∆ 1   = ∆ 2 =1.83. We substitute the delta width value into
(Eq. D-8) and compute S values. We can see that the calculated S-value is in line with the
assumption in our analysis, namely, S =1.  The reproduced function values at input locations are
also given below. It can be seen that the first-cut delta width value gives fairly good reproduced
function values at 12 input locations. If one wants to reproduce the function value at location #3
more close to the original input value, then one reduces the width to 1.40 to improve the results.

Location
Number

S value found
( ∆ 1   = ∆ 2 =1.83)
(average of S =1.41)

Reproduced
function value

( ∆ 1   = ∆ 2 =1.83)

Reproduced
function value

( ∆ 1   = ∆ 2

=1.40)

Input
Function
 f(x1, x2)

1 1.09978634732106 216.063 221.18 226.06
2 1.46188852514591 80.88 80.047 79.54
3 1.20993373995982 11.733 10.153 8.93
4 1.18970951468216 19.048 14.885 9.87
5 1.35469744099448 65.12 62.931 60.36
6 2.16053954169866 128.622 127.123 119.93
7 1.28607451881441 19.435 15.924 12.23
8 1.19872814418426 58.945 54.846 52.36
9 1.48191667295652 165.82 172.105 183.89

10 1.06703321688486 289.698 296.599 302.61
11 1.24509553961353 126.336 130.604 134.51
12 2.21934025360859 131.241 129.369 129.86

Example 2: This example is copied from the problem used in SIC 2004 exercise. The supported domain
has a rectangular shape with interval length 360,000 meters along x-axis and 700,000 meters along y-

axis.
There are 200 input locations given together with function values. Also, there are 800 output locations
where function values are to be interpolated. (The reader can download the input locations and output
locations at: “http://www.ai-geostats.org/events/sic2004/index.htm” and click on “training data”.).



Solution:  We begin the analysis, by using the equation,

∆
x = 2'πM

lx
 where xl =360000, M’=200. Thus ∆

x=∆
1 =8102. (in meters)

∆
y = 2'πM

l y
 where yl =700000, M’=200. Thus ∆

y=∆
2 =15755. (in meters)

Substituting the delta width values into (Eq. D-8), we obtain the following average values of  S for both
200 input and 800 output locations. Again, they are near the value of one.  Following the same procedure
as in the previous example by reducing delta width values to match the global maximum and minimum,
we found that when ∆

x=4000   and ∆
y= 4000, the interpolant can reproduce the global maximum and

minimum input function values within a few percent. For SIC 2004 exercise, we have chosen and preset
∆

x=∆
y = 4000 in the actual contest. All the measures of merit for the exercise have been calculated

and they all indicate good results. (Please read the document at “http://www.fanginc.com/sic1.pdf”)

`

∆ 1 ∆ 2
S  values  found

(for all 200 input
locations)

S  values  found
(for all 800 output

locations)
8102 15755 average=1.86

1.11<S<3.44
average=0.84
0.13<S<2.66

4000 4000 average=8.57
7.9<S<12.6

average=0.61
0.04<S<7.2

(3)  More Discussion of  ε  value and statistical errors

Let us recall (Eq. 7A),

εδ =−� − ∆ dx'x)(x'
b

a
f(x)][f(x')

1

1
       (Eq. 7A)

Note that the above integral is with respect to x’, and ∆  and x values are fixed. ε  is a function of  ∆  and x.
We define C( ∆ , x ) in the following equation,
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where =−� ∆ dx'x)(x'
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a
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Now we rearrange (Eq. 7A) as,
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Recast the above integral by use of Monte-Carlo integration and we obtain,
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From (Eq. D-10), we also obtain through Monte-Carlo integration,
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Substituting this equation into (Eq. D-12), we get
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Comparing (Eq. D-15) and (Eq. 15A), one obtains that F+H = E. The reason for us to show the above
derivation is to understand better the values of ε  and the statistical error incurred. As commented in the last section,
if one does not have the true function value and uses the fA value to calculate the ε  value, then it always gives the value
zero for ε .  It is not possible to find the correct sample estimate of ε . From (Eq. D-12), it can be seen that the
interpolant  fA(x) defined indeed is the “unbiased” estimator for the function which is a combination of,

)],()([ xcxf ∆+

Therefore, one needs to keep in mind that to use fA(x) as the interpolant for  f(x) will be a good approximation
as long as C( ∆ , x ) is small in magnitude as compared with f(x). This condition is generally satisfied, as shown
in the last section, when ∆  is very small. Also, if ∆  is finite and when x is not near, say 3 ∆  away from, the
boundary of the domain, C( ∆ , x ) will remain small. Note again that C( ∆ , x ) is related analytically to ε
through (Eq. D-10) and (Eq. D).

One explicit calculation of ε  value is given below by use of the specified function f(x).

Example: Find ε  value when function f(x) = x2 and the supported domain is (-10, 10).

Solution: Follow the definition of  ε , (Eq. 7A).

εδ =−� − ∆ dx'x)(x'
b

a
f(x)][f(x')

1
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       (Eq. 7A)

Choose x=2 as an example. We obtain,
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Let x’-2= y, and we obtain
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Using (Eq. D-17) and with 3 different  ∆  values, we obtain

∆ ε

2 8.27
1 4.9

0.5 2.5

One more example, if x=9. Then
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Again  with 3 different  ∆  values, we obtain

∆ ε

2 -14.28
1 -9.25

0.5 -5.45

Indeed, near the edge of the boundary, we can see that the magnitude (absolute value) ofε  gets larger as
expected. This, in fact, gives a theoretical proof  to what is generally known as “edge effect” in nonparametric kernel
regression.
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